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Abstract — The paper presents a methodology of the 
Backward Differentiation Formula (BDF) for the variable 
time-stepping finite-element discretization. The back-history 
damping matrix in the BDF has been solved. The developed 
BDF formulation was implemented for solving the 
Electromagnetic Diffusion equation for first order finite 
elements. The final discrete system has been formulated to 
include magnetic nonlinearity. An initial-guess prediction 
algorithm was adapted for fast convergence. The algorithm 
was programmed in C language.  

I. INTRODUCTION 

In the electromagnetic machinery design and analysis, 
the space and time electromagnetic fields at a certain instant 
of time are usually required. Therefore a transient analysis 
is necessary. Due to the complexity that represents the 
solution of the partial differential equation (PDE) as a 
function of space and time, numerical methods to find a 
solution are commonly used. In the last decades, the finite 
element method (FEM) has proved to be one of the most 
popular and effective numerical PDE solution technique 
due to its high accuracy [1]-[2]. The Backward 
Differentiation Formula (BDF) is a variable time-stepping 
method with high accuracy results [3]-[4].  

In this paper, the BDF [3] is adapted to the FEM. The 
backward-history damping matrix is solved and the last 1-3 
time-step iteration results are used for the damping and 
convergence. The methodology is implemented in the 
transient solution of the diffusion equation using 2D first-
order triangular elements. Non linear parameters are taken 
into account in the formulation and the system is solved 
using the Newton-Raphson method. An initial prediction 
guess algorithm is included for fast convergence. The 
developed algorithm was programmed in C language. 

II. VARIABLE TIME-STEP ALGORITHM 

The electromagnetic diffusion equation is given by (1). 
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where A stands for magnetic vector potential and is z-
directed in 2D, J is the current density,   is the magnetic 
permeability and  represents the electric conductivity.  

Equation (1) is expressed in the space and time domain. 
In the FEM space discretization of (1), a linear variation of 
A  within the finite element is  used (2). 
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where αj refers to the shape functions and Aj refers to the 
nodal potentials. The discrete time derivation of (1) can be 
obtained by expanding it in a Taylor series and applying the 
theta algorithm [2], [5].  However, an alternative and more 
general time discretization with the BDF algorithm with 
variable time-stepping approach can be used.  

The residual (3) and Jacobian (4) show the space and 
time discretization of equation (1) for a variable time 
stepping. 
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where ρ goes from 1 to back history number (BHN), m goes 
from 0 to BHN, S is the elemental area (m2), and h stands 
for the last time increment magnitude (s).  Mij,  gij , Tij , f

m 
and  Tm are defined as: 

 

                    j3i3j2i2ij ggggM                         (5) 

 

     
      






















123123

211332

122131132332 )()()(

xxxxxx

yyyyyy

yxyxyxyxyxyx

gij            (6) 

 

                                      (7)  

















12/12/1

2/112/1

2/12/11

ijT

mailto:ronat-13@hotmail.com
mailto:marjona@ieee.org
mailto:coni.hernandez@ieee.org


11. NUMERICAL TECHNIQUES 

 

 

                            1m

m
m 0

h

m
f 







                       (8) 

 

               m1n1nmm tt
h

1

h

1
  













           (9) 

The inverse matrix (9) is called in this paper as the BDF 
damping matrix. Suffixes i, j and n per element are declared 
as follows {i=1, 2, 3}, {j=1, 2, 3}, {n=1,2,3}. The solution 
of the nonlinear equation is obtained by applying the 
Newton-Raphson algorithm (10). 
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Fig. 2. Transient nodal solution using 1 and 3 backward steps. 

 
A. Initial guess prediction for the An+1 potential The problem was solved employing an absolute error of 

1E-5 for one and three backward step history. It was 
observed that for a low backward step number, the potential 
results are similar to those obtained using a small time-step 
size (Euler method). However, the execution time is larger 
than that obtained with a larger history number. For three 
and more backward steps, there is a damping problem that 
will be analyzed in the final version of the paper. A 
criterion for the selection of the minimum step size will 
also be included.  

To accelerate the convergence of the Newton-Raphson 
method in (3) and (4), a prediction for the initial values An+1 
is made in accordance with (11). 
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where k goes from 0 to BHN and the η constants are 
calculated as follows, 
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where v goes from 0 to BHN-1. 

III. SIMULATION RESULTS 

The discrete systems given by (3) and (4) were 
programmed in C language and solved for the domain 
shown in Fig. 1. The local truncation error considered is 
given by (15).  
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 Fig. 3.  Magnetic potential distribution at t=20 s, for two backward steps. 
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